0.5V VLSI Processor Circuit Technologies

Sadaaki Hattori
Sakurai Laboratory
Department of Electronic Engineering, The University of Tokyo
Contents

1. Background

2. Circuit design at low voltage

3. Low voltage logic technologies

4. Low voltage SRAM memory cells

5. Summary
Trend of processor power

(Power consumption of processors published in ISSCC)

- Very High speed
- Large power
- High speed
- Low power

Crusoe
Published in Jan, 2000
Power < 6W
Power Crisis in VLSI processor

(ITRS: International Technology Roadmap for Semiconductors 1999)

174W Power in 2011 acceptable?
1. Background

2. Circuit design at low voltage

3. Low voltage logic technologies
4. Low voltage SRAM memory cell
5. Summary
Power & Delay Dependence on $V_{DD} & V_{TH}$

\[P = P_t f_{CLK} C_L V_{DD}^2 + \text{Leak power} \]

\[t_{pd} = \frac{k C_L V_{DD}}{(V_{DD} - V_{TH})^\alpha} \]

$\alpha = 1.3$
Contents

1. Background
2. Circuit design at low voltage
3. Low voltage logic technologies
 Controlling V_{DD} and V_{TH} for low power
4. Low voltage SRAM memory cell
5. Summary
Controlling V_{DD} and V_{TH} for low power

<table>
<thead>
<tr>
<th></th>
<th>Active Power</th>
<th>Standby Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple V_{TH}</td>
<td>Dual-V_{TH}</td>
<td>MTCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGMOS</td>
</tr>
<tr>
<td>Variable V_{TH}</td>
<td>VTCMOS</td>
<td>VTCMOS</td>
</tr>
<tr>
<td>Multiple V_{DD}</td>
<td>Dual-V_{DD}</td>
<td>(SCCMOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(BGMOS)</td>
</tr>
<tr>
<td>Variable V_{DD}</td>
<td>Variable Supply</td>
<td></td>
</tr>
</tbody>
</table>
Multi-Threshold CMOS (MTCMOS)

Benefits
- Low leakage current in standby
 - Reduced by 3 or 4 orders of magnitude.

Issues
- Large leak cut-off transistor
- Difficult for ultra low voltage
- Need for special Flip Flop
Super Cut-Off CMOS (SCCMOS)

CMOS circuits
- low V_{TH}
- ultra thin T_{OX}

Leak cut-off switch
- low V_{TH}
- preferably thick T_{OX}

V_{DD} can be decreased to 0.5V
V_{TH} can be decreased to less than 0.2V
Delay characteristics

SCCMOS 0.2V V_{TH} circuit with 0.2V V_{TH} cut-off MOSFET

MTCMOS 0.2V V_{TH} circuit with 0.6V V_{TH} cut-off MOSFET

Conventional All 0.6V circuit No cut-off MOSFET

Standby current = 1pA
Controlling V_{DD} and V_{TH} for low power

<table>
<thead>
<tr>
<th></th>
<th>Active Power</th>
<th>Standby Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple V_{TH}</td>
<td>Dual-V_{TH}</td>
<td>MTCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGMOS</td>
</tr>
<tr>
<td>Variable V_{TH}</td>
<td>VTCMOS</td>
<td>VTCMOS</td>
</tr>
<tr>
<td>Multiple V_{DD}</td>
<td>Dual-V_{DD}</td>
<td>(SCCMOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(BGMOS)</td>
</tr>
<tr>
<td>Variable V_{DD}</td>
<td>Variable Supply</td>
<td></td>
</tr>
</tbody>
</table>
Dual-Threshold Voltage technique

Critical paths \rightarrow Low-V_{TH} MOS
\rightarrow High leakage, High speed

Non-critical paths \rightarrow High-V_{TH} MOS
\rightarrow Low leakage, Low speed
Controlling V_{DD} and V_{TH} for low power

<table>
<thead>
<tr>
<th></th>
<th>Active Power</th>
<th>Standby Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple V_{TH}</td>
<td>Dual-V_{TH}</td>
<td>MTCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGMOS</td>
</tr>
<tr>
<td>Variable V_{TH}</td>
<td>VTCMOS</td>
<td>VTCMOS</td>
</tr>
<tr>
<td>Multiple V_{DD}</td>
<td>Dual-V_{DD}</td>
<td>(SCCMOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(BGMOS)</td>
</tr>
<tr>
<td>Variable V_{DD}</td>
<td>Variable Supply</td>
<td></td>
</tr>
</tbody>
</table>
Dual Supply Voltage scheme

Critical paths \rightarrow High-V_{DD} \rightarrow High speed

Non-critical paths \rightarrow Low-V_{DD} \rightarrow Low power

Needs high speed level converter.
Controlling V_{DD} and V_{TH} for low power

<table>
<thead>
<tr>
<th></th>
<th>Active Power</th>
<th>Standby Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple V_{TH}</td>
<td>Dual-V_{TH}</td>
<td>MTCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCCMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGMOS</td>
</tr>
<tr>
<td>Variable V_{TH}</td>
<td>VTCMOS</td>
<td>VTCMOS</td>
</tr>
<tr>
<td>Multiple V_{DD}</td>
<td>Dual-V_{DD}</td>
<td>(SCCMOS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(BGMOS)</td>
</tr>
<tr>
<td>Variable V_{DD}</td>
<td>Variable Supply</td>
<td></td>
</tr>
</tbody>
</table>

16
Variable Supply Voltage scheme (VS)

V_{DD}: External voltage

DC-DC Converter

Controller

Speed Detector

$V_{DD,IN}$: Required frequency

T_{cp}: Delay time of critical path

T_{CLOCK}: Clock cycle

- $T_{cp} > T_{CLOCK}$ ↔ “+” ↔ $V_{DD,IN}$
- $T_{cp} = T_{CLOCK}$ ↔ No change
- $T_{cp} < T_{CLOCK}$ ↔ “-“ ↔ $V_{DD,IN}$
1. Background
2. Circuit design at low voltage
3. Low voltage logic technologies

4. Low voltage SRAM memory cell

 Memory in processor requires high speed

5. Summary
Low voltage SRAM memory cells

Lowering V_{DD} of SRAM cell is difficult.

- Long wire
- Large capacitance
 - Needs strong current supply.
- Leak
 - Data will be lost.
0.5-1V V_{DD} SRAM

- $V_{DD}=0.5V$
- High-$V_{TH}=0.35V$
- Low-$V_{TH}=0.15V$

- Write-port and Read-port are divided in order to cut read error.
- Precharge level of Bit line is low because of leakage at low-V_{TH} MOS.

Low precharge → Low speed
High-$V_{TH}=0.35V$ → Low reliability
Summary

Low power technologies will be most important technologies for future VLSI processor.

- **Low voltage logic technologies**

<table>
<thead>
<tr>
<th></th>
<th>Active Power</th>
<th>Standby Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple V_{TH}</td>
<td>Dual-V_{TH}</td>
<td>MTCMOS, SCCMOS</td>
</tr>
<tr>
<td>Variable V_{TH}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple V_{DD}</td>
<td>Dual-V_{DD}</td>
<td>(SCCMOS)</td>
</tr>
<tr>
<td>Variable V_{DD}</td>
<td>Variable Supply</td>
<td></td>
</tr>
</tbody>
</table>

- **Low voltage SRAM memory cell**
Future VLSI processor

For portable
• Ultra low V_{DD} (<0.5V)
• High frequency (>1GHz)
• Low power (<10W)

For High-end machine
• Low V_{DD} (>0.5V)
• Very high frequency (>10GHz)
• Large power (>100W)

Now → time